
RDC 金麗科技

2024.4.25

RDC°

免責聲明

- 本簡報內含預測性陳述,受到各種風險及不確定因素 影響,可能造成實際結果與陳述內容發生顯著不符。
- ▶本簡報中所提供之資訊,係反應本公司截至目前為止對於未來的看法,並未明示或暗示性地表達或保證其具有正確性、完整性或可靠性。對於簡報內容,未來若有任何變更或調整,本公司不負責更新或修正。

議程

- I.公司簡介
- Ⅱ.市場概況
- Ⅲ.公司產品
- IV. 財務報表
- V.未來機會

RDC金麗科技背景

▶ 成立時間: 1997年8月

▶實收資本額: 約新臺幣 6.98億元

▶ 上櫃日期: 2005 年3月2日 (股票代號: 3228)

▶ 產業類別: 半導體產業|C設計領域

- 20年以上自有 x86 CPU 架構 IC 設計經驗;
- x86 相容產品10年以上不斷貨供應保證;
- 銷售超過百萬件處理器與控制器至世界各地。

x86 CPU (RDC以外)

- Intel
- AMD
- ◆ VIA {Cyrix、IDT}<=>上海兆芯 (*Centaur團隊已賣給Intel)
- ◆ 海光: AMD授權USD2.93億 (*被美國政府停止)。

CPU應用別

CPU

- x86+Windows
- ARM+IOS/Android
- MIPS
- RISC-V

Client

- PC/NB+周邊 ★AI PC/NB
- Mobile+周邊 ★Al Mobile

介面

• 基地台+周邊 ★PCIE Switch

資料中心

- Server
- ◆Data Center
- ◆Edge Server
- **◆Al Server**

x86公司比較

公司名稱	was年營收(USD)	was GM%	is年營收(USD)	is GM%	市值(USD)
Intel	700-800E	約 60%	505E	約 40 %	1458E
AMD	100-200E	約 40%	227E	約 46%	2460E
海光訊息			8-10E	約 59.67%	234E
金麗科				約60%	6E
Total	約1000E		約700-800E		

PS: 大陸佔X86 CPU 總營收約30-40%

RDC x86-64 4-core SoC status

x86-64bits SoC

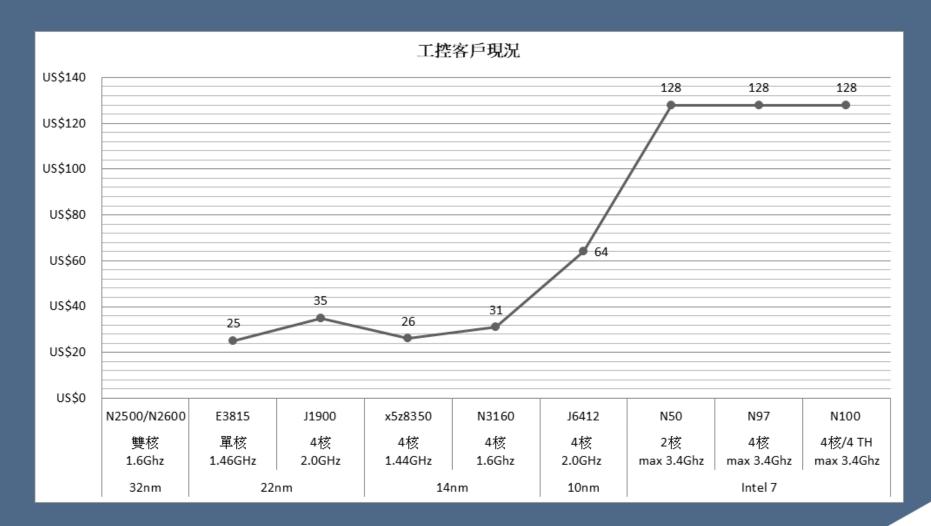
- 28nm/22nm, PCIe Gen3.0, DDR4, ...

2024

2025

2026

Multi-Core 2/4/8/16/32

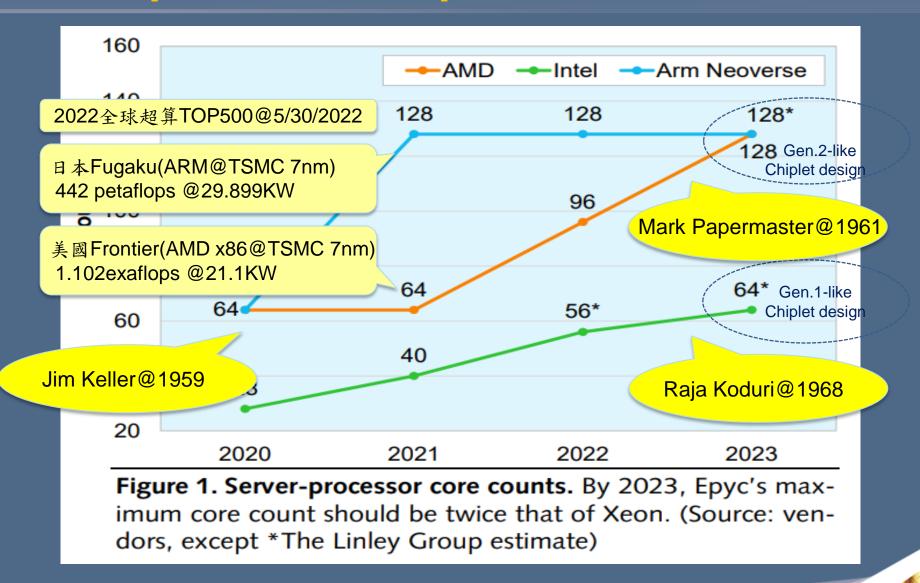

32-bits 1.5GHz Multi-Core(4) 64-bits 2.0G Multi-Core (16)

64-bits 3.0GHz Multi-Core (128) 64-bits

3.0GHz

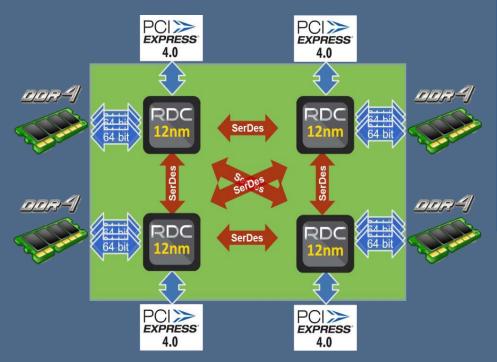
工控客戶現況 - Process/Price table

客戶實際產品

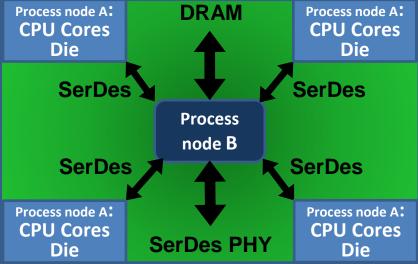

- > 伺服系統:包括增量型及絕對型編碼器
- ▶ PLC 產品:
 - PAC (Programmable Automation Controller)
 - PLC (Programmable Logic Controller)
- > CNC 產品:
 - 木工機控制器/車床控制器/銑床控制器/塑膠機控制器/磨床控制器/雷射加工控制器...
- >機器人產品:
 - 滑軌機器人控制器
 - 關節機器人控制器: 拋光,焊接,噴塗,搬運,衝壓

注:大陸其他 PLC, CNC, 機器人廠商採用 Intel J1900, J6412 或 i5 的 x86 Solution

RDC HPC 解決方案


Microprocessor Report CPU Core Counts

第一代與第二代Chiplet架構說明


Intel, Apple, NVIDIA 仍然在此架構

RDC's Gen.1 Chiplet design

AMD 的改變

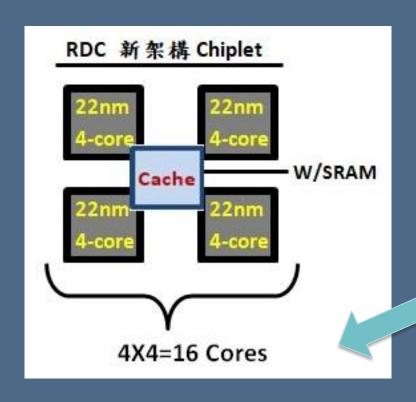
RDC's Gen.2 Chiplet design

RDC HPC Solutions

- > 先進製程方案
 - Single Die SoC
 - 2.5D chiplet SoC
- ▶ 成熟製程方案
 - Chiplet SoC
 - Dynamic Domino Circuit for High Speed Operation

RDC HPC Solutions

RDC Dynamic Circuit

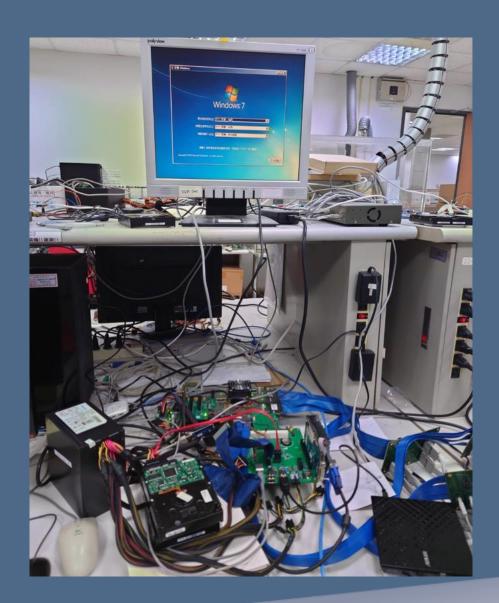

	28nm	22nm	16/14/12nm	7/6nm		
效能	1	1.3	1.5	1.7-1.8		
	採用 RDC Dynamic Circuit 技術					
	能增加	1.4 倍	x1	x1		
	1.4	1.8	1.5	1.7-1.8		

註1: RDC分別於 9/21/2021 及 10/12/2021 取得兩項 Dynamic Circuit 相關的美國發明專利。

註2:表格內所列數據係RDC內部評估資料,僅供輔助說明表格內容之用。

RDC Chiplet Architecture

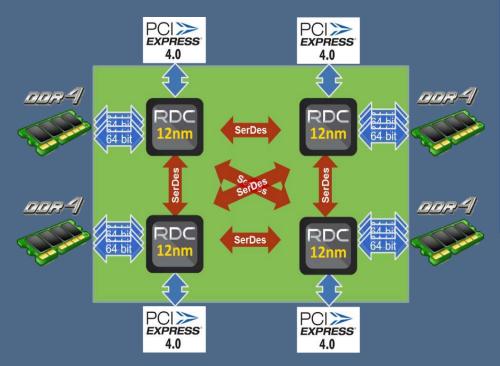
使用6nm VS. 原單顆16 Cores


優:相同效能

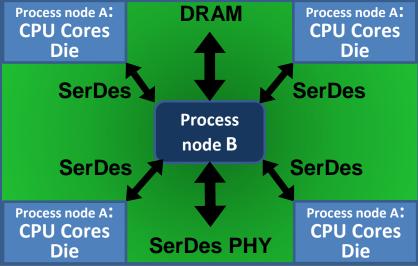
劣: 新架構chiplet 功耗增加

註1:表格內所列數據係RDC內部評估資料,僅供輔助說明表格內容之用。

RDC x86 64-bit boot windows

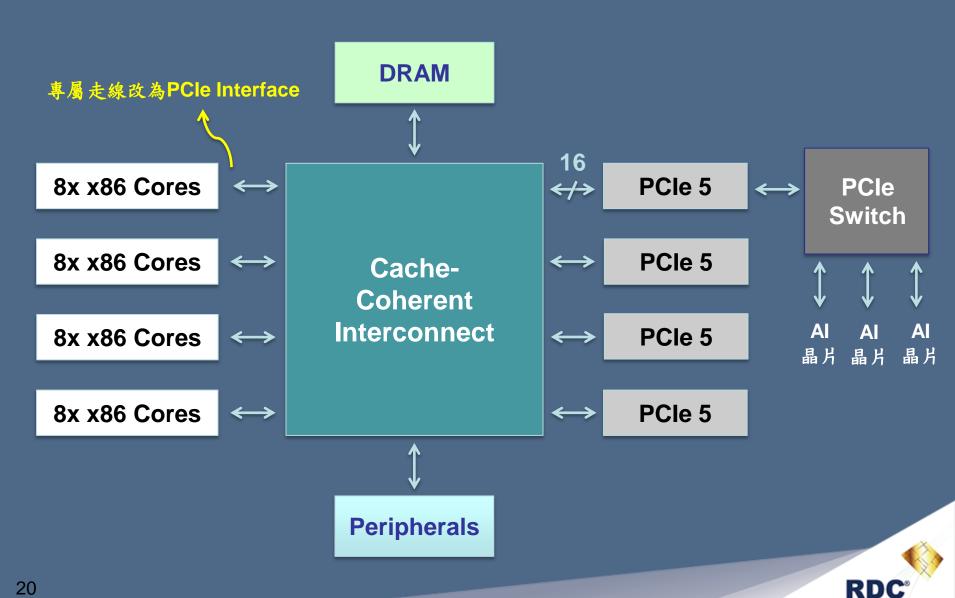

PCle Switch 技術開發及產品說明

PCle Switch技術來自於第二代Chiplet架構說明(一)


Intel, Apple, NVIDIA 仍然在此架構

RDC's Gen.1 Chiplet design

AMD 的改變


RDC's Gen.2 Chiplet design

PCle Switch技術來自於第二代Chiplet架構說明(二)

PCle Switch 關鍵技術說明

- > Broadcast 架構
- > Dynamic Phase Alignment 技術
- ➤ Dynamic Circuit 技術

因此與傳統網通 Switch 晶片公司不同架構設計

PCle Switch產品開發

- ➤ 採用12nm PCle Gen5 Switch 對標 Broadcom 採用5nm製程
- 採用6nm 達到10T專屬或PCIe Gen6 Switch提供世界各地AI應用需求

損益表

單位:2023年新台幣仟元(除每股盈餘為元外)

	Q1 2023	Q2 2023	Q3 2023	2023年度	2024Q1 自結數*
營業收入	76,582	77,141	75,348	301,777	109,659千元
營業毛利	51,332	48,302	49,927	193,361	_
營業費用	74,433	72,966	79,818	315,445	_
營業利益(損失)	(23,101)	(24,664)	(29,891)	(122,084)	_
稅前淨利(淨損)	(23,450)	(21,963)	(25,664)	(118,796)	7.7百萬元
本期淨利(淨損)	(24,682)	(22,971)	(25,664)	(121,036)	6.7百萬元
每股盈餘	(0.36)	(0.34)	(0.37)	(1.73)	0.1元

*2024年1月~3月本公司採IFRS會計準則編製之自結數,係依財團法人中華民國證券櫃檯買賣中心通知分別於2/23、3/22與4/24辦理公告,未經會計師查核(閱),僅供投資人參考。

RDC

資產負債表

單位:新台幣仟元

	2023/3/31	2023/6/30	2023/9/30	2023/12/31
資產總計	779,934	771,999	749,144	700,714
現金及約當現金	93,909	76,441	74,387	67,478
存貨	167,839	162,060	161,893	149,493
不動產、廠房及 設備	187,640	178,175	186,147	176,644
無形資產	221,806	203,656	185,835	182,732
負債總計	83,779	105,594	107,494	111,593
權益總計	696,155	666,405	641,650	589,121

應用市場競爭優勢分析(I)

▶ Embedded應用以x86相容性及客製化設計服務, 與美商Intel/AMD做差異化競爭。

▶ Intel/AMD往高效能高耗電競爭,中低階未來可能 面臨無x86 CPU供應的狀況,RDC可滿足市場。

應用市場競爭優勢分析(II)

- > 針對x86 HPC市場的說明
 - · TSMC營收HPC已經超越手機。
 - TSMC的HPC客戶目前以美國公司為主: Intel, AMD, NVIDIA
 - ·因應歐盟、中國、東南亞等非先進製程,RDC的第二代 Chiplet架構提供 x86 HPC核心晶片在地生產的自主要求。

未來機會

- 1.64位元4核心:工業/自動化IPC應用/PC,NB。
- 2. 64位元16核心:工業/自動化IPC應用/PC,NB,AIPC。
- 3. 64位元128核心:edge server/data center/Al server。
- 4. PCIe Switch •
- 5.5G基地台。
- 6. x86 SoC ASIC •

彙總說明

Thank You!

